Syntheses and structures of two new dibenzobicyclic phenylboronates

Norberto Farfán *, Pedro Joseph-Nathan, Luis Manuel Chiquete and Rosalinda Contreras
Centro de Investigación y de Estudios Avanzados del I.P.N., Departamento de Química, Apartado Postal 14-740, 07000 México, D.F. (México)

(Received August 12th, 1987; in revised form November 9th, 1987)

Abstract

The preparation, spectroscopic data and structure determination of ($N-B$)-phenyl[amino-2,2'-diphenolate- O, O^{\prime}, N]borane (3) and of ($N-B$)-phenyl[N-methyl-amino-2,2'-diphenolate- O, O^{\prime}, N]borane (4) derived from $2,2^{\prime}$-diphenolamine (5) and from N-methyl-2,2'-diphenolamine (6), respectively, are described. The structure of 3 was further demonstrated by X-ray diffraction studies.

In recent years we have been interested in the syntheses of bicyclic boron compounds derived from diethanolamines [1], phenolamines [2], iminodiacetic [3] and N-alkyl- N-(ethyl-2-hydroxy)-aminoacetic acids [4], as well as in studying intramolecular $\mathrm{N} \rightarrow \mathrm{B}$ coordination. In a continuation of these studies we describe in this paper the preparation and spectroscopic characterization of the $2,2^{\prime}$-diphenolamine and N-methyl-2, 2^{\prime}-diphenolamine esters derived from phenylboronic acid.

In contrast to triptychboroxazolidine (1) [5], the boric ester of $2,2^{\prime}, 2^{\prime \prime}$-triphenolamine (2) [6] has been found not to have a $N \rightarrow B$ bond. The absence of coordination has been attributed to angular restrictions as well as to low nitrogen basicity. Therefore the $2,2^{\prime}$-diphenolamine (5) ligand in boron heterocycles is of interest in order to test whether $\mathrm{N} \rightarrow \mathrm{B}$ coordination is possible when a diaromatic amine is used as the ligand.

2
Table 1
${ }^{13} \mathrm{C}$ and ${ }^{12} \mathrm{~B}$ NMR chemical shifts (ppm)

${ }^{13} \mathrm{C}$												${ }^{11} \mathrm{~B}{ }^{\text {a }}$
Compound	C(1)	C(2)	$\mathrm{C}(3)$	C(4)	C(5)	C(6)	C(7)	C(8)	C(9)	C(10)	R	
$3^{\text {c }}$	157.6	131.2	$118.9{ }^{\text {d }}$	127.4	$121.9{ }^{\text {d }}$	113.0	139.0	131.8	129.8	127.9	-	+13.7
$4^{\text {c }}$	157.2	136.2	$119.2{ }^{\text {d }}$	127.7	$119.4{ }^{\text {d }}$	114.8	143.0	133.1	130.1	128.8	47.5	+17.4
5°	146.3	131.4	$114.9{ }^{\text {d }}$	$119.8{ }^{\text {e }}$	$119.4{ }^{*}$	$114.8{ }^{\text {d }}$	-	-	-	-	-	
6°	150.1	137.2	$121.0{ }^{\text {d }}$	125.9	$122.6{ }^{\text {d }}$	116.1	-	-	-	-	41.9	

${ }^{a}$ In THF. ${ }^{b}$ In DMSO- $d_{6}{ }^{\circ}$ In $\mathrm{CDCl}_{3}{ }^{\text {d,e }}$ Assignments may be interchanged.

The new compounds described herein are (NB)-phenyl[amino-2, 2^{\prime}-diphenolateO, O^{\prime}, N borane (3) and ($N-B$)-phenyl[N-methylamino-2, 2^{\prime}-diphenolate- O, O^{\prime}, N] borane (4). The structure of the former was also determined by a single crystal X-ray study. This structure provided information on the length of the $\mathrm{N} \rightarrow \mathrm{B}$ bond, thereby giving insight into problems encountered in the synthesis of stable boron chelates.

Compounds 3 and 4 were prepared from diphenolamines 5 and 6, respectively, and phenylboronic acid:

In contrast to boronic esters derived from ethanolamines [1], such as 7, which decompose readily in air at room temperature, 3 and 4 can be handled under the same conditions without decomposition.

$7 \mathrm{R}=\mathrm{H} \cdot \mathrm{CH}_{3}$
These stable dibenzobicyclic boranes have a strong $\mathrm{N} \rightarrow \mathrm{B}$ intramolecular coordination between a dianilinic weak base and a phenylboronic weak acid. An explanation for this unusual behavior is that the rigid polycyclic structure brings the nitrogen and boron close together in space, thus constraining the coordination. This type of bonding was not observed in compound 2 , which does not form a $\mathrm{N} \rightarrow \mathrm{B}$ bond, in spite of the fact that both compounds share a common ligand.

NMR results

Evidence for intramolecular $\mathrm{N} \rightarrow \mathrm{B}$ coordination is based on the characteristic ${ }^{11} \mathrm{~B}$ NMR data [7] (Table 1). Thus, the ${ }^{11} \mathrm{~B}$ resonances for compounds 3 and $4(\delta+13.7$ and +17.4 ppm , respectively) are shifted to higher fields with respect to phenylboronic acid $(\delta+28.4 \mathrm{ppm})$ [7], and therefore correspond to a four coordinated boron atom. These data are in agreement with other $\mathrm{N} \rightarrow \mathrm{B}$ bicyclic derivatives [1].

The ${ }^{13} \mathrm{C}$ NMR chemical shifts (Table 1) show a strong magnetic deshielding effect of the $C(1)$ signal owing to the formation of a boron-oxygen bond that weakens the mesomeric donor ability of oxygen towards the phenyl ring [8]. On the other hand, $\mathrm{C}(2)$, shows a very small shielding effect owing to the nitrogen boron
coordination ($\Delta \delta 0.2$ for $3,1.0 \mathrm{ppm}$ for 4), when compared to the N-methylaniline borane ($\delta 148.3 \mathrm{ppm}$), which is shifted 1.9 ppm to high field referred to the free N-methylaniline ($\delta 150.2 \mathrm{ppm}$) [9]. Moreover, C(10) in 3 and 4 (127.9 and 128.8 ppm, respectively, which are para to the boron-phenyl group, also show the nitrogen-boron coordination, giving shifts of 4 to 5 ppm to higher fields, when compared with the same atom of the free phenylboronic acid ($\delta 132.7 \mathrm{ppm}$ in CDCl_{3}) [10]. This shift can be attributed to an increase in electron density of the boron-phenyl group. A similar effect is observed for the phenylboronic ester of catechol (8), whose pyridine complex (9) is shielded by 3.8 ppm [10] (C para in phenylboron $\delta 132.3 \mathrm{ppm}$; pyridine complex $\delta 128.5 \mathrm{ppm}$).

8
9

Mass spectra

Mass spectral fragmentation of 3 and 4 are similar, showing the initial loss of the phenyl and R groups to give the base peak $10(m / z=209)$ which is easily recognized as an ion containing a single boron atom (${ }^{10} \mathrm{~B} /{ }^{11} \mathrm{~B}=1 / 4$).

$4 \mathrm{R}=\mathrm{CH}_{3}$

Infrared

Further evidence for the $\mathrm{N} \rightarrow \mathrm{B}$ coordination is obtained from IR data, since compounds 3 and 4 show the characteristic bands at 999 and $1019 \mathrm{~cm}^{-1}$, respectively, attributed to the $\mathrm{N} \rightarrow \mathrm{B}$ bond [11].

X-Ray diffraction study

The structure determination of 3 by X-ray diffraction (Tables $2-4$, Fig. 1) establishes the central bicyclic structure showing a $\mathrm{N}-\mathrm{B}$ bond length of $1.699 \AA$. The value is comparable to the $\mathrm{N} \rightarrow \mathrm{B}$ bond length in its aliphatic analogue (11) ($1.666 \AA$) [12].

11

The boron-phenyl and the NH groups in 3 are bent further away, as indicated by the bond angle values ($\mathrm{H}-\mathrm{N}-\mathrm{B}$ of 117.7° and $\mathrm{N}-\mathrm{B}-\mathrm{C}(7)$ of 114.1°), than in 11

Table 2
Crystal data, collection and refinement parameters for ($N-\mathrm{B}$)-phenyl(amino-2,2'-diphenolateO, O^{\prime}, N)borane

A. Crystal parameters	
chemical formula	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{NB}$
molecular weight	286.13
crystal system	orthorhombic
space group	$\mathrm{Ccm} 2_{1}$
crystal size, mm	$0.6 \times 0.18 \times 0.14$
crystal color	pale brown
cell constants	
a, \AA	$9.6639(33)$
b, \AA	16.2866 (57)
c, \AA	$9.1330(22)$
α, deg	90.000 (00)
β, deg	90.000 (00)
γ, deg	90.000 (00)
cell volume, \AA^{3}	1437.47
ρ (calc), $\mathrm{g} / \mathrm{cm}^{3}$	1.32
Z	4
$F(000), \mathrm{e}^{-}$	596
B. Data collection parameters	
μ, cm^{-1}	6.9
scan width, below $K_{\alpha_{1}}$, above $K_{\alpha_{2}}$, deg	1.0, 1.2
2θ limits, deg	$3^{\circ}-110^{\circ}$
scan speed (variable), deg min^{-1}	(4.0, 29.3)
exposure time, h	22.87
total no. reflections collected	1090
no. unique reflections	498
C. Structure refinement	
reflections for final refinement	491
parameters refined	117
$R(\mathrm{~F})$, \%	2.72
$R_{\mathrm{w}}(\mathbf{F})$, \%	3.29
goodness of fit for the last cycle	1.215

Table 3
Atom coordinates $\left(\times 10^{4}\right)$ and temperature factors $\left(\AA^{2} \times 10^{3}\right.$) for ($N-B$)-phenyl(amino-2, 2^{\prime}-diphenol-ate- O, O^{\prime}, N - borane (3)

Atom	x	y	2	$U_{\text {eq }}$
$\overline{\mathrm{C}}$ (1)	$9780(2)$	6145(1)	5268(3)	54(1) ${ }^{4}$
0	10970(1)	5741(1)	4957(3)	$73(1)^{a}$
C(2)	8932(2)	5769(1)	6280(4)	48(1) ${ }^{\text {a }}$
N	9576(3)	5000	6769(4)	$45(1)^{a}$
C(3)	7705(3)	6116(2)	6744(4)	61(1) ${ }^{\text {a }}$
C(4)	7336(3)	6865(2)	6144(4)	$77(1)^{a}$
C(5)	8180(3)	7250(2)	5122(4)	$74(1)^{\circ}$
C (6)	9410(3)	6898(2)	4656(4)	68(1) ${ }^{\text {a }}$
B	11112(4)	5000	5865(5)	$53(1)^{a}$
C(7)	12428(3)	5000	6907(4)	48(1) ${ }^{a}$
C(8)	13021(2)	4277(2)	7406(4)	$62(1)^{a}$
C(9)	14154(3)	4274(2)	8347(4)	81(1) "
C(10)	14696(3)	5000	8825(6)	85(2) "
H	9595(45)	5000	7636(74)	86(16)
H(3)	7052	5813	7553	$99(11)$
H(4)	6370	7156	6476	113(11)
H(5)	7868	7843	4677	$90(9)$
H(6)	10063	7199	3844	87(8)
H(8)	12588	3693	7048	$65(7)$
H(9)	14606	3694	8703	$115(10)$
H(10)	15563	5000	9588	221(30)

${ }^{a}$ Equivalent isotropic U defined as one third of the trace of the or thogonalised $U_{i j}$ tensor

Table 4

Bond lengths (\AA) and angles (deg.) for ($N-B$)-phenyl(amino-2, 2^{\prime}-diphenolate- $O_{,} O^{\prime}, N$)borane (3)

$\mathrm{C}(1)-\mathrm{O}$	$1.355(3)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.380(4)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.394(3)$	$\mathrm{O}-\mathrm{B}$	$1.471(3)$
$\mathrm{C}(2)-\mathrm{N}$	$1.468(3)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.380(3)$
$\mathrm{N}-\mathrm{B}$	$1.699(5)$	$\mathrm{N}-\mathrm{C}(2+)$	$1.468(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.383(4)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.389(4)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.387(4)$	$\mathrm{B}-\mathrm{C}(7)$	$1.588(5)$
$\mathrm{B}-\mathrm{O}+$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.386(3)$	
$\mathrm{C}(7)-\mathrm{C}(8+)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.392(4)$	
$\mathrm{C}(9)-\mathrm{C}(10)$	$\mathrm{C}(10)-\mathrm{C}(9+)$	$1.365(4)$	
$\mathrm{N}-\mathrm{H}$			
$\mathrm{O}-\mathrm{C}(1)-\mathrm{C}(2)$	$1.386(3)$	$\mathrm{O}-\mathrm{C}(1)-\mathrm{C}(6)$	
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$1.365(4)$	$\mathrm{C}(1)-\mathrm{O}-\mathrm{B}$	$124.1(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$111.1(2)$	
$\mathrm{N}-\mathrm{C}(2)-\mathrm{C}(3)$	$115.4(2)$	$\mathrm{C}(2)-\mathrm{N}-\mathrm{B}$	$122.3(2)$
$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(2+)$	$120.5(2)$	$\mathrm{B}-\mathrm{N}-\mathrm{C}(2+)$	$102.9(2)$
$\mathrm{C}(20-\mathrm{C}(3)-\mathrm{C}(4)$	$109.3(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$102.9(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$128.4(3)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$120.9(3)$
$\mathrm{O}-\mathrm{B}-\mathrm{N}$	$117.1(3)$	$\mathrm{O}-\mathrm{B}-\mathrm{C}(7)$	$117.4(3)$
$\mathrm{N}-\mathrm{B}-\mathrm{C}(7)$	$117.5(3)$	$\mathrm{O}-\mathrm{B}-\mathrm{O}+$	$114.4(2)$
$\mathrm{N}-\mathrm{B}-\mathrm{O}+$	$121.5(2)$	$\mathrm{C}(7)-\mathrm{B}-\mathrm{O}+$	$110.3(3)$
$\mathrm{B}-\mathrm{C}(7)-\mathrm{C}(8)$	$101.1(2)$	$\mathrm{C}(\mathrm{C}(7)-\mathrm{C}(8+)$	$114.4(2)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(8+)$	$114.1(3)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(9)$	$121.9(2)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$101.1(2)$	$\mathrm{C}(20-\mathrm{N}-\mathrm{H}$	$122.1(3)$
$\mathrm{B} \mathrm{N}-\mathrm{H}$	$121.9(2)$	$120.1(4)$	

Fig. 1. Molecular structure of 3.
($\mathrm{H}-\mathrm{N}-\mathrm{B}$ of 111.0° and $\mathrm{N}-\mathrm{B}-\mathrm{C}(3)$ of 113.2°). The $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angle is larger in 3 ($\mathrm{C}-\mathrm{N}-\mathrm{C} 117.1^{\circ}$) and the $\mathrm{O}-\mathrm{B}-\mathrm{O}$ angle is smaller (112.9°), when compared with those of 11 [12]. All the other structural features are in reasonable agreement with those of o-aminophenol hydrochloride [13].

Conclusion

Comparison of compound 3 with its aliphatic analogue 11 allows to conclude that basicity is not a decisive factor for the formation of stable $\mathrm{N} \rightarrow \mathrm{B}$ bonds. This in turn suggests that the main factor which precludes formation of a coordinate bond in $\mathbf{2}$ is angular restriction.

Experimental

NMR spectra were recorded with JEOL FX90Q (${ }^{11} \mathrm{~B},{ }^{13} \mathrm{C}$ NMR) and Varian Associates EM-390 (${ }^{1} \mathrm{H}$ NMR) spectrometers. Chemical shifts are relative to BF_{3}. $\mathrm{Et}_{2} \mathrm{O}$ and TMS. Mass spectra were obtained with a Hewlett-Packard 5985-A spectrometer and infrared spectra were determined on a Nicolet MX-1 FT spectrophotometer in KBr pellets. The X-ray study was performed on a Nicolet R3m four-circle diffractometer using monochromated $\mathrm{Cu}-K_{\alpha}$ radiation.
($N-B$)-Phenyl[amino-2, 2^{\prime}-diphenolate-O, $\left.O^{\prime}, N\right] b o r a n e ~(3)$
A solution of $2,2^{\prime}$-diphenolamine ($0.34 \mathrm{~g}, 1.7 \mathrm{mM}$) in 150 ml of dry benzene was placed into a 250 ml flask equipped with a stirrer and a Dean-Stark trap.

Phenylboronic acid ($0.20 \mathrm{~g}, 1.7 \mathrm{~m} \boldsymbol{M}$) was added and the mixture was kept under reflux for 4 h . After removal of the solvents in vacuo, the product was recrystallized from benzene/acetone to give 0.42 g of the compound 3, m.p. $190-192^{\circ} \mathrm{C}$. IR: $\nu(\mathrm{N} \rightarrow \mathrm{B}) 999 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}$ (in CDCl_{3}) : 8.2-8.4 (m, 2H); 7.4-7.7 (m, 11H). MS: $m / z=287(M)^{+}, 39 \% ; 288(M+1)^{+}, 7 \% ; 286,8 \% ; 210,18 \% ; 209,100 \% ; 208.15 \%$.
($N-B$)Phenyl/ N-methylamino- $2,2^{\prime}$-diphenolate- $\left.O, O^{\prime}, N\right]$ borane (4)
In the procedure used for 2, N-methyl-2, 2^{\prime}-diphenolamine ($0.29 \mathrm{~g}, 1.3 \mathrm{mM}$) and phenylboronic acid ($0.16 \mathrm{~g}, 1.3 \mathrm{mM}$) gave 0.22 g of compound 4 , m.p. $217-219^{\circ} \mathrm{C}$. IR: $\nu(\mathrm{N} \rightarrow \mathrm{B}) 1019 ;{ }^{1} \mathrm{H}$ NMR (in $\left.\mathrm{CDCl}_{3}\right): 8.6-8.8(\mathrm{~m}, 2 \mathrm{H}) ; 6.9-7.4(\mathrm{~m}, 11 \mathrm{H}) ; 2.8(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right) . \mathrm{MS}: m / z=301(M)^{+}, 64 \% ; 302(M+1)^{+}, 17 \% ; 300,18 \%, 224,50 \%$; 210, 17\%; 209, 100\%; 208, 28\%.

Acknowledgements

We are grateful to Conacyt, to Proyectos Estratégicos-SEP and to COSNET-SEP (México), for financial support and to Ing. L. Velasco (UNAM) for mass spectra.

References

1 R. Contreras, C. Garcia, T. Mancilla and B. Wrackmeyer, J. Organomet. Chem., 246 (1983) 213.
2 N. Farfán and R. Contreras, Heterocycles, 23 (1985) 2989.
3 T. Mancilla, R. Contreras and B. Wrackmeyer, J. Organomet. Chem., 307 (1986) 1.
4 T. Mancilla and R. Contreras, J. Organomet. Chem., 321 (1987) 191.
5 Z. Taira and K. Osaki, Inorg. Nucl. Chem. Lett., 7 (1971) 509.
6 M.A. Paz-Sandoval, C. Fernández-Vincent, A. Klaébé, G. Uribe and R. Contreras, Polyhedron, in press.
7 H. Nöth and B. Wrackmeyer, NMR Spectroscopy of Boron Compounds in P. Diehl, E. Fluck and R. Kosfeld (Eds.), NMR-Basic Principles and Progress, Springer Verlag, Berlin, Vol. 14, 1978.
8 R. Goetze, H. Nöth, H. Pommerening, E. Sadlak and B. Wrackmeyer, Chem. Ber., 114 (1981) 1884.
9 M.A. Paz-Sandoval, C. Camacho, R. Contreras and B. Wrackmeyer, Spectrochim. Acta A, 43 (1987) 1331.

10 N. Farfán and R. Contreras, J. Chem. Soc., Perkin Trans., 2 (1987) 771.
11 N. Farfán and R. Contreras, Nouv. J. Chim., 6 (1982) 269.
12 S.J. Retting and J. Trotter, Can. J. Chem., 53 (1975) 1393.
13 A.F. Cesur and J.P.G. Richards, Z. Kristallogr., 122 (1965) 283.

